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Introduction

* There are different methods for quantifying emissions from
satellite data; see review article by Streets et al., 2014;
http://dx.doi.org/10.1016/j.atmosenv.2013.05.051

* Here we use OMI measurements of SO, to detect and quantify
global SO, emissions
— SO, data is from NASA PCA algorithm (Li et al., 2013), 2005-2015
— Wind profile information from the ECMWEF reanalysis interim product is
mapping onto each OMI SO, Vertical Column Density (VCD) measurement
« OMI data is analyzed after it has been rotated about a reference
point in order to co-align the wind direction of each
measurement (see Pommier et al., GRL, 2012)

— This conserves the relative downwind-upwind location, relative to the
reference location




Rotation Example

* The mean SO, VCD distribution looks like a plume
 Peak valuesin the rotated frame typically increase

* An analysis of the downwind decay of pollutant can be used
to derive emissions
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|dentification of sources
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Figure below: Application to the Eastern-US. Top: The downwind-upwind VCD difference map shows very
localized peaks indicating the location of sources. Bottom: The downwind-upwind difference decreases
rapidly just a few km from the source location.
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Comparison

 Downwind-upwind difference is almost always better than
average VCD at locating sources and discriminating between

sources and artefacts
 Downwind-upwind difference hotspots are localized about
source, the detection limit about 30 kt/yr

e Sources within 20 km cannot be resolved
Downwind-Upwind difference in SO, VCD

Average SO, VCD

Google earth

*® Sources from the HTAP emissions inventory



OMI SO, Inventory (or catalogue)

Global search resulted in ~500 verified emission sources

Annual emissions were quantified (Fioletov et al., 2015) for 298
power plants, 53 smelters, 64 oil and gas sources, 78 volcanos

Catalogue includes: source location, name, type, 2005-2015
annual emissions

Location and type of all identified SO, sources
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Algorithm Verification

Eastern-US power plants are used to evaluate the algorithm

Magnitude of Emissions Location of Emissions
« HTAP-EDGAR emissions integrated <+ Distance between the location of
over a 50 km about the reference peak in source map (from 2D peak-
location finder) and the actual facility
— Even better agreement is seen — Locate to within 8 + 4 km

using the facility level emissions

350

20| 2008 emissions

N
(4
o

200

150

Satellite emissions [kt/yr]

-

o

o
T

50~

10
HTAP-EDGAR emissions [kt/yr] Distance [km]

0 50 100 150 200 250 300 350



Global sources
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°} Example: Karabash Smelter in Russia

Karabash smelter (founded in 1837) |
is one of the oldest and largest A |
copper smelters in Russia. An SO, e
signature is clear in OMI

* In 2005, the plant owner reported = — Ignoring nearby sources

Simultaneous fit to all regional sources

installation of scrubbers, but 400 ——
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Right: Comparison of OMI SO2 emissions with those o

reported by the plant operators 2000 2002 2004 2006 2008 2010 2012 2014 2016
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Below: Mean SO, VCD near Japanese
volcanos
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Above: Time series of OMI emission rates
calculated for every 3 months for four
volcanoes (red). Grey dots are daily emission
estimates provided by Japan Meteorological
Agency.



u Missing Sources

e Catalogue includes 39 verified sources missing from HTAP,
EDGAR, and MACCity emissions inventories
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The location of the missing sources and the volcanos. Each country is coded according to the
fraction of its total source that is missing from the HTAP inventory. These missing sources
represent about 6% of the anthropogenic total. Considering only half can be detected, it is
estimated that 12% is unaccounted for in bottom-up inventories
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Left: OMI SO, downwind-upwind difference (2007-2009). There are at least 9 large SO, sources identified
by OMI that are unaccounted for in the HTAP, EDGAR, and MACCity inventories. Middle: VIIRS night-light

imagery indicating many of the SO, sources are also sources of flaring. Right: OMI NO, downwind-upwind
difference. Some of the missing SO, sources are also missing from the NO, inventories.
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Volcanos

 “Aerocom” volcanic emissions inventory is recommended for
use with HTAP and used by several models (e.g, GEOS-Chem

and WRF-Chem)

* Passive degassing emissions from Aerocom and OMI do not
compare well; Aerocom uses “fill values” for many volcanos
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Application to OMI
NO, :
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Summary

* OMlis able to both detect and quantify emissions of SO,
independent of conventional emissions knowledge sources

— A global SO, inventory was created that is complimentary to bottom-
up inventories

* OMI NO, inventory is also possible (if more complex)
— PM (from AOD) also works, perhaps NH; as well; CH,?, CO,?
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